MATH 590: QUIZ 11

Name:

1. For an $n \times n$ matrix A defined over \mathbb{C}, define the adjoint of A and use this definition to state what it means for A to be unitary (complex orthogonal). (4 points)

Solution. The adjoint A^{*} of A is defined as $A^{*}:=(\bar{A})^{t}=\overline{A^{t}}$. A is unitary if $A^{-1}=A^{*}$.
2. Show that the matrix $A=\left(\begin{array}{cc}3 & 2 i \\ -2 i & 3\end{array}\right)$ is normal and then find a unitary matrix P such that $P^{*} A P$ is a diagonal matrix. Be sure to justify that P is unitary. Note: You just have to find the correct P, you do not have to check $P^{*} A P$ is diagonal. (6 points)

Solution. $p_{A}(x)=\left|\begin{array}{cc}x-3 & -2 i \\ 2 i & x-3\end{array}\right|=(x-3)^{2}+(2 i)^{2}=\left(x^{2}-6 x+9\right)-4=x^{2}-6 x+5=(x-5)(x-1)$, so the eigenvalues of A are 5 and 1 .
$E_{5}=$ null space of $\left(\begin{array}{cc}-2 & 2 i \\ -2 i & -2\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{cc}1 & -i \\ i & 1\end{array}\right) \rightarrow\left(\begin{array}{cc}1 & -i \\ 0 & 0\end{array}\right)$, so that $u_{1}:=\frac{1}{\sqrt{2}}\binom{i}{1}$ is a unit length eigenvector for 5 .
$E_{1}=$ null space of $\left(\begin{array}{cc}2 & 2 i \\ -2 i & 2\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right) \rightarrow\left(\begin{array}{cc}1 & i \\ 0 & 0\end{array}\right)$, so that $u_{2}:=\frac{1}{\sqrt{2}}\binom{-i}{1}$ is a unit length eigenvector for 1 .
Note that $u_{1} \cdot u_{2}=\frac{1}{\sqrt{2}}\binom{i}{1} \cdot \frac{1}{\sqrt{2}}\binom{-i}{1}=\frac{1}{2} \cdot(i \cdot \overline{(-i)}+1 \cdot \overline{1})=\frac{1}{2}(-1+1)=0$, so that u_{1} and u_{2} are orthogonal.
Since the unit length eigenvectors are orthogonal, the matrix $P=\left(\begin{array}{cc}\frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ is a unitary matrix that diagonalizes A.

